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We discuss possible mechanisms for indirect exchange between ferromagnetic � layers of transition metal
inserted into a semiconducting host, taking into account the role of carrier confinement at these layers. We
show that the Ruderman-Kittel-Kasuya-Yoshida mechanism is not the ultimate explanation for an interlayer
interaction and an efficient interlayer coupling can be mediated by the undoped semiconducting spacer due to
virtual excitations across the energy threshold. We emphasize the important role of quasi-two-dimensional
spin-polarized states inside the bulk energy gap, which are caused by the confinement and the exchange
scattering of itinerant electrons by the � layers. Quasiparticle excitations from these states to the band edge of
the spacer contribute to the interlayer coupling even for a wide gap semiconducting spacer. Our analysis shows
that the related exchange integral can change its sign at some “critical” spacer thickness, i.e., a ferromagnetic
coupling mechanism is active at short distance between � layers and an antiferromagnetic coupling mechanism
is active at large distance. Taking into account the effects of crystal symmetry, we also obtain the expression
for the interband coupling energy in the case of both direct- and indirect-gap spacers. We show that the carrier
confinement gives rise to a renormalization of the intensity of excitations through the band gap. The interband
coupling decays exponentially with the distance between the � layers and is strongly determined by the
electron structure of the host. The estimates of the interlayer interaction parameters across Si, Ge, and GaAs
spacers are presented. The combination of two mechanisms �confinement-mediated exchange and interband
exchange� mainly determines the behavior of the interlayer coupling in the digital magnetic alloys with
undoped spacer.
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I. INTRODUCTION

A unique combination of properties makes hybrid ferro-
magnetic metal/semiconductor �FM/SC� layered nanostruc-
tures very attractive for various spintronic applications.1

These layered materials allow for locally high concentrations
of magnetic ions, significantly exceeding the solubility limit
in the bulk diluted magnetic semiconductors �DMS�. The
strength of the exchange interaction between magnetic mo-
ments and band electrons of the spacer at interfaces in
FM/SC nanostructures is of orders of magnitude larger than
in the bulk of DMS. Hence, the control of magnetic and
magnetotransport characteristics in FM/SC nanostructures
would be more efficient than in DMS quantum wells.

Molecular beam epitaxy techniques with monolayer pre-
cision have reached a high degree of accuracy so that it is
now possible to prepare FM/SC digital magnetic alloys
�DMA�, in which the monolayers or submonolayers of tran-
sition metals, embedded into SC host by means of selective
doping, form the so-called FM � layers.1 By engineering the
composition of the FM and of the SC, as well as the distance
between FM � layers, one can vary the band spectrum and
factors influencing magnetic order in these materials.

Among DMA, the structures based on III–V SC com-
pounds have been most extensively studied. Thanks to well-
established growth expertise, some interesting technological
procedures have recently been devised. One example is the

digital heterostructure GaAs/MnAs grown by alternate depo-
sition of nanolayers of GaAs �SC� and MnAs �FM�.2,3 Digital
alloys �GaAs,GaSb�/Mn have been grown by periodically
embedding submonolayers of magnetic atoms �Mn� into the
SC host �GaAs or GaSb�.4–6 Note also the original method of
� doping of Mn atoms into the SC �GaAs�-based heterostruc-
tures, successively achieved in Refs. 7 and 8. Despite the
relevance and special interest for integration into mature sili-
con technologies for spintronic application, rather little atten-
tion has been paid to DMA based on the group IV SC
�mainly Si and Ge�. There exist, nevertheless, serious evi-
dences for FM ordering in DMS of type Ge:Mn �Refs. 9 and
10� and Si:Mn �Refs. 11 and 12� as well as in multilayers of
type Fe/Si.13,14

On the other hand, ab initio electron structure calculations
have been performed for DMA Mn/GaAs,15–18 Mn/Ge,19,20

and Mn/Si.21,22 In these calculations, the model of a sequence
of Mn monolayers, periodic along the �001� direction and
separated by several monolayers of the SC host, has been
used. It has been found that �i� FM order in the Mn layer is
energetically more favored than antiferromagnetic �AFM� or-
der; �ii� the strong Coulomb and exchange interactions of
carriers with Mn ions lead to carrier confinement at the FM
layers; and �iii� the electron spectrum is half-metallic and has
strongly spin-polarized two-dimensional energy bands.

The results of numeric calculations demonstrate an impor-
tant effect of �s , p�−d hybridization and charge redistribution
between FM monolayers and SC host on the DMA band
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structure. The electron spectrum of DMA has a very complex
character, containing both strongly correlated �Hubbard-like�
narrow bands and weakly correlated wide bands. The FM
order inside each metal monolayer leads to spin splitting of
the electron states, thus lowering the total energy of the sys-
tem and forming the spin-polarized bands. The description of
an intralayer FM order due to strong correlations in the nar-
row electron bands, associated with a half-metallic state, is
similar to that of the conventional model of itinerant ferro-
magnetism in transition metals and their alloys.23

Following the results of numerical calculations,15–22 we
suppose in this work that FM order exists inside each � layer
and concentrate on a question: what is the mechanism of an
interlayer exchange coupling �IEC� in DMA systems? In
principle, ab initio calculations might simultaneously de-
scribe both the intralayer and interlayer magnetic orders in
the system. However, to obtain sufficient numerical accu-
racy, these studies have really been restricted to relatively
small spacer thicknesses since it was necessary to calculate
very small deviations in total energy between different mag-
netic configurations, for instance, between parallel and anti-
parallel alignments of moments at neighboring FM layers �a
priori, the noncollinear configurations cannot be also ex-
cluded either�. Moreover, the modern epitaxial technology
produces nanostructures that are too far from the ideal ones
used in first principle calculations. In real DMA, nominal
monolayers or submonolayers appear rather as alloying re-
gions, smeared along the growth direction.

To our knowledge, the origin of IEC in DMA has not been
sufficiently studied so far. The main problem is to reveal the
groups of electron states that dominate IEC. Several sce-
narios may be envisioned. In principle, the Fermi-level posi-
tion of the system strongly depends on the charge redistribu-
tion between the SC spacer and FM � layers, and can be
shifted into the conduction or valence band of the spacer.
Then, the usual Ruderman-Kittel-Kasuya-Yoshida �RKKY�-
like exchange mechanism via free carriers �real electron-hole
excitations in the vicinity of the Fermi level� dominates the
interaction between FM � layers. This interaction has a be-
havior that oscillates with the distance, as in conventional
metals or degenerate semiconductors. On the other hand, if
the Fermi level is located within the energy gap of the spacer,
the IEC, determined by virtual electron-hole excitations
through the energy threshold, acquires an exponential decay
at large distances. As a rule, this energy threshold is simply
associated with the energy gap of the SC spacer although in
some layered structures it might be less than the gap thanks
to the presence of the spin-split interface states inside the
fundamental gap. As it is shown in several works �see, for
example, Ref. 24�, the �s , p�−d hybridization occurs to pro-
vide a strong superexchange contribution to IEC when the
electron density of states �DOS� exhibits a peak-shaped fea-
ture close to the Fermi level. If the DOS peak is rather large,
virtual transition between the peak and the conduction �va-
lence� band edge could dominate IEC. This situation prob-
ably takes place in the well-known multilayered system
Fe /Fe1−xSix�001� with x�0.5, which has been described in
the framework of the superexchange model in Ref. 25.

In view of the complexity of the problem, and since IEC
is highly sensitive to a choice of type and thickness of both

the SC spacer and the FM layer, we would like to propose
comprehensible qualitative scheme describing this phenom-
enon.

The paper is organized as follows. In Sec. II we briefly
discuss a simple model of DMA. In Sec. III we develop a
formalism describing two-dimensional electron states in a
system composed of two FM � layers separated by a SC
spacer. In Sec. IV the IEC energies of such system are cal-
culated for a FM and an AFM alignment of the moments of
adjacent � layers. In Sec. V we analyze the interband contri-
bution into IEC for DMA based on IV and III–V SCs. In Sec.
VI we summarize our results and discuss some unsolved
problems. Finally, in the Appendix we give rough estimates
for the characteristic lengths of IEC, based on electron struc-
ture calculations.

II. MODEL

In this section we propose a simple model allowing us to
describe the dependence of the IEC integral on the SC spacer
thickness. Let us consider the fragment of DMA consisting
of two parallel FM � layers embedded in a crystalline SC
host. The Hamiltonian H of the SC electron states, which are
spin polarized by the presence of the FM � layers, may be
written in the following form:

H = H0 + V�+ l� + V�− l� , �1�

H0 = �
nk�

�nkank�
+ ank�, �2�

and

V��l� = − �
nk

�
n�k�

�
�,�

ank�
+ �Unk,n�k���l� + Jnk,n�k���l�

��� · M��l�����an�k�� exp�i�kz − kz����l�� . �3�

Here, H0 is the Hamiltonian of a bulk SC, a+ �a� is the
creation �annihilation� operator, �nk are the quasiparticle en-
ergies, �k ,k��, �n ,n��, and �� ,�� are momenta, band, and
spin indices of the Bloch states, respectively. The Hamil-
tonian V��l� describes the interaction of the SC host with
the FM � layers. Denoting z as the coordinate along the
heterostructure growth direction, we designed these layers to
be infinitesimally thin planes placed at z= � l. Thus, the sys-
tem is uniform and infinite in the transverse directions x and
y. As it can be seen from Eq. �3�, the metal layers are as-
sumed to excite both charge and spin densities in the SC. In
this work, we treat the spin density of the layers classically
so the vectors M��l� represent the mean magnetization of
the “right” �+l� and “left” �−l� layers, the distance between
two FM planes is 2l, and � is a vector composed of the Pauli
matrices. We assume that the vectors M�+l� and M�−l� lay in
the �x ,y� plane. The matrix elements Unk,n�k���l� and
Jnk,n�k���l� describe the intensities of the potential and ex-
change scatterings by the � layers, respectively. It is assumed
that the values of the matrix elements are independent of the
position ��l�: M�+l�=M�−l�=M, Unk,n�k��+l�=Unk,n�k��−l�
=Unk,n�k�, and Jnk,n�k��+l�=Jnk,n�k��−l�=Jnk,n�k�. Notice also
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that the interaction is local in the z direction and strictly
periodic in the �x ,y� plane so that the matrix elements
Unk,n�k�=Un,n��k� −k��� and Jnk,n�k�=Jn,n��k� −k��� depend
only on the difference of the longitudinal components of mo-
menta �k ,k�� from the first Brillouin zone of the SC host.

In DMA, the valence chemical bonding between ions of
transition metal and nearest neighboring ions of SC, as well
as the corresponding electronic states at the FM � layer, is
highly complex. In the framework of our approach, we sim-
ply treat the FM � layer in the host as a source of scattering
entailed in the potential U��l� and the exchange J��l� com-
ponents in the Hamiltonian �3�. Such an assumption allows
us to construct a physically transparent analytical scheme. It
is implied that band carriers moving along the z axis are
strongly scattered by the two FM � layers while they keep a
free propagation along the interface �x ,y� plane. Of course,
electrons of the SC host are spin polarized in the vicinity of
the FM � layer. Moreover, the magnetic configuration of the
system depends self-consistently on the rearrangement of the
electron spectrum of the SC host, caused by both the poten-
tial �Unk,n�k�� and exchange �Jnk,n�k�� components of the
scattering �Eq. �3��. In turn, the spin density distribution of
carriers determines IEC between the FM � layers through the
SC spacer.

III. SPIN-POLARIZED ELECTRON STATES INDUCED
BY FM � LAYERS

We start our analysis by adopting a single-band descrip-
tion of the electron structure of the system: n=n�=1 and
�1k=��k�, where k= �kx ,ky ,kz� is the momentum measured
from a relevant point of the first Brillouin zone of the SC.
The Green function of the Hamiltonian �1�–�3� is given by

G���k,k�,	� = �k,k����G0�k,	� + �G���k,k�,	� , �4�

where G0�k ,	�= �	−��k��−1 is the Green function of bulk
SC host. The additional term

�G���k,k�,	� = �k�,k��
G0�k,	�T���k,k�,	�G0�k�,	� �5�

appears as a result of the interaction V��l� �Eq. �3�� with the
� layers; here the function

T���k,k�,	� = �Q��
+ �k�,	�exp�i�kz − kz��l��

+ Q��
− �k�,	�exp�− i�kz − kz��l�

+ P��
+ �k�,	�exp�i�kz + kz��l�

+ �P��
− �k�,	�exp�− i�kz + kz��l���
�k�,	��−1

�6�

is the full t matrix, which represents the multiple scattering
of carriers by the defect of two parallel � layers inserted in
the SC medium. The following notations are adopted:


 = D2 − 2g2�K2 + J2M2�n+ · n−�� + g4�U2 − J2M2�2, �7�

Q��
� = D�K��� + JM�� · n����� − g2�U2 − J2M2��K���

− JM�� · n����� , �8�

P��
� = g�K2 + J2M2�n+ · n−����� − g3�U2 − J2M2�2���

+ gKJM�� · �n+ + n−���� + igJ2M2�� · �n+ � n−����,

�9�

D = �1 − Ug0�2 − J2M2g0
2, �10�

K = �1 − Ug0�U + J2M2g0, �11�

g0 = g0�k�,	� = G0�l,l,k�,	� = G0�− l,− l,k�,	�

= G0�0,0,k�,	� = �
kz

G0�k,	� =	 azdkz

2�
G0�k,	� ,

�12�

and

g = g�k�,	� = G0�l,− l,k�,	� = G0�− l,l,k�,	�

= �
kz

G0�k,	�exp�2ikzl� =	 azdkz

2�
G0�k,	�exp�2ikzl� ,

�13�

M��l� = Mn�,

where k� = �kx ,ky� is the �x ,y� component of momentum par-
allel to the interface, k= �k� ,kz�, and az is the lattice spacing
of the SC along the z axis. We take the intraband matrix
elements at the band extremum point, U=U1,1�0� and J
=J1,1�0�, in which all the other matrix elements are assumed
to be negligibly small. Note also that the above parameters
are linked by the relation

D = 1 − �U + K�g0.

The poles of the scattering matrix �Eq. �6�� give the elec-
tron spectrum of the system. It should be noted that the de-
terminant 
�	� depends parametrically on both the mutual
orientation of the magnetic moments of the inserted layers,
�n+ ·n−�, and on the distance between them, 2l. Since we are
only interested in the case when the Fermi level lies inside
the SC band gap, only the solutions of the equation 
�	�
=0 with negative energies, 	�0, are considered below.

If the interlayer distance tends to infinity, l→
 �accord-
ingly, g→0�, the single � layer situation occurs. In the sys-
tem with a short-range attractive potential, U�0, there is
always a bound state for a particle moving perpendicularly to
the � layer. The twofold spin degeneration of this state is
removed due to the presence of the magnetic layer. In the
case of a single plane with JM �0, the spectrum is simply
given by D�	�=0, i.e.,

g0
−1�k�,	� = U � JM . �14�

We shall assume in what follows that the condition 
U

� 
JM
 is fulfilled.

In the case of two parallel FM layers, each state inherent
to a single layer is split into a bounding and an antibounding
state. The splitting is proportional to the overlap integral of
wave functions localized at the different planes, which is the
value �g /g0�2. As a consequence of quantization of the trans-
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verse �relative to the layer plane� propagation of carriers,
four two-dimensional subbands are formed inside the gap of
the SC host, 	=	i�k��, where i=1, 2, 3, and 4, i is the
subband index.

The electron DOS variation per spin direction caused by
the � layer, taking into account Eq. �5�, is given by

�N��	� = −
2

�
Im �

k�

T���k,k,	��G0�k,	��2. �15�

For the sake of simplicity, we express the electron spectrum
in the form: ��k�=���k��+���kz�, and write the full variation
of the DOS as

�N�	� = �
�

�N��	�

=
4

�

Im 	 d��N2�����K�D − g�U2 − J2M2��

�g0

�	

+ g�K2 + J2M2�n+ · n−�g2�U2 − J2M2�2�
�g

�	
� ,

�16�

where the two-dimensional DOS is introduced in the stan-
dard way, promoting wave-vector sums to energy integrals,

�
k�

→	 a�
2dk�

�2��2 →	 d��N2���� ,

where the length a� is the lattice period of the SC in the plane
�x ,y�. In the following, we shall omit the “transverse” index
�, i.e., assign ��=�. After some manipulations, one reduces
Eq. �16� to the following expression:

�N�	� = �
i
	 d��N2������	 − 	i�k��� , �17�

where

	i�k�� = �i + ���k�� �18�

is the ith branch of the electron spectrum, which has been
defined above as a solution of the equation 
�	�=0 and ��	�
is delta function. Here we consider electron states near the
conduction-band bottom, which we take as the zero energy.
In this case, �i�0. Of course, one could change the signs
accordingly in order to depict states near the top of the va-
lence band. The value �i determines the position of a mini-
mum of the ith subband with respect to the edge of the three-
dimensional band of the SC host, i.e., the depth of the state
inside the band gap localized in the z direction.

In the following, in order to carry out concrete calcula-
tions, we use for the band electron energy the parabolic form

�1k=��k�=
k�

2

2m�
+

kz
2

2m , where m� and m are the “longitudinal”
and transverse effective masses near the bottom of the con-
duction band, respectively. On the one hand, the effective-
mass approach is quite accurate because actual quasiparticle
energies are small in comparison to the width of the conduct-
ing band, W �
	
�W�; on the other hand, it allows us to
simplify the calculations. Indeed, the functions g0 �Eq. �12��
and g �Eq. �13�� take the fairly simple forms:

g0 = − az
 m

2�− ��
, �19�

and

g = g0 exp�− 2l
2m�− ��� , �20�

where �=	−�� is the energy of an electron moving normal
to the interface. Inserting the values g0 �Eq. �19�� and g �Eq.
�20�� into Eq. �7�, one may cast the equation 
�	�=0 in the
form

�
E − 1�4 − 2�A + B��
E − 1�2 − 4AB�
E − 1�

− 2AB�n+ · n−�E + �A + B − AB�2 − 2AB = 0, �21�

where we introduced the dimensionless parameters

E =
2
�


maz
2U2 ,

A = A�	� = � g

g0
�2

= exp�− L
E� ,

B = � JM

U
�2

,

L = 4 lm az
U
 . �22�

We notice several characteristic features of the solutions
of Eq. �21�, i.e., the discrete energies �=�i, for the DMA
structure considered here.

If �n+ ·n−��−1, Eq. �21� has four real solutions Ei �we
assume that E1�E2�E3�E4� at large distances L�L4,
three solutions �E1�E2�E3� in interval L3�L�L4, and
two solutions �E1�E2� in the region L�L3. In this manner,
two out of four states move from the band gap to the con-
tinuum, i.e., they become resonant states when L=L3,4,
where

L4,3 =
2 � 
2B�1 + n+ · n−�

1 − B
.

At arbitrary alignment of the magnetic moments, the
asymptotic behavior of E�L� at L�1 and L�L4 can be ex-
pressed as


E1,2�L� = 
E0
�+��1 �
1

2
A�+��L��1 + n+ · n−� + ��+��L�� ,

�23�

and


E3,4�L� = 
E0
�−��1 �
1

2
A�−��L��1 + n+ · n−� + ��−��L�� ,

�24�

where
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�����L� = �
A����L�

4
� �1 − n+ · n−�
E0

���


B

− L�1 + n+ · n−�
E0
���� ,

A����L� = exp�− L
E0
���� . �25�

The values E0
���= �1�
B�2 are the dimensionless energies of

the localized electron states in the case of a single � layer in
the host �see Eq. �14��.

In the case of FM alignment of the moments, n+ ·n−=1,
we denote the solutions of Eq. �21� as Ei

�f�, i=1, 2, 3, and 4.
At some intermediate point of the interval �L3 ,L4�, the terms
E2

�f� and E3
�f� become degenerate, i.e., there is a level crossing.

Figure 1 shows the typical behavior of the levels �i as
functions of the interlayer distance 2l �actually, we plot the
dimensionless parameters Ei vs L for a collinear orientations
of the moments� and B=0.1.

It is worthwhile noting that for the antiparallel �AFM�
configuration of the magnetic moments of the two planes,
n+ ·n−=−1, when the total magnetization of the system is
equal to zero, the spin splitting of the localized states disap-
pears and one is left with a pair of twofold-degenerate bands,
	i

�a��k��=�i
�a�+���k��, i=1 and 2; the energy minima of which

obey the equation:

�
E − 1�2 + AB − A − B = 0. �26�

We denote the solutions of Eq. �26� using the symbols E1,2
�a�.

The solution E2
�a� exists under the condition L�2 / �1−B� and

E1
�a��E2

�a�. The asymptotic behavior of the function E�a��L�,
when L�1, is described by the relation


E1,2
�a��L� = 
E0

��� �
1 − B

2
B
A����L� , �27�

if parameter B is not too small; the dependence A��L� has
been determined above, Eq. �25�. The values E1

�a� and E2
�a�

�Eq. �27�� coincide with E1,2 and E3,4, respectively, when
n+ ·n−=−1 in Eqs. �23� and �24�.

It is important to notice that, in view of our further analy-
sis, the various energies are located along the energy axis
according to the relations E1

�f��E1
�a��E2

�f��E3
�f��E2

�a��E4
�f�,

as it can be seen from Fig. 1.

IV. CONFINEMENT-MEDIATED INTERLAYER
EXCHANGE COUPLING

The DOS of a two-dimensional parabolic band ��k��
=k�

2 /2m� is equal to zero at 	�0 and independent of the
frequency at 	�0, i.e. is N2�	�=N2h�	�, where N2
=m�a�

2 / �2�� and h�	� is the Heaviside unit step function:
h�	�0�=1 and h�	�0�=0. In the model under consider-
ation, the DOS inside the bulk band gap, �N�	�, has the form
of a staircaselike function,

�N�	� = N2�
i

h�	 − �i� , �28�

where the sum is carried over the states with �i�0.
The two-dimensional states that split from the bulk band

continuum of the undoped SC are partly filled with quasipar-
ticles, having been transferred from transition-metal atoms
inside the � layers or/and from the spacer. Strictly speaking,
an analysis of the energies of the various magnetic configu-
rations of the DMA for a fixed total number of quasiparticles
in the system �consisting of the SC host and of the FM �
layers inserted into the host� should be considered.

However, this procedure is too complex. We restrict our-
selves to consider the collinear alignment of the moments
M��l�.

First, we focus on the situation when the number of qua-
siparticles in � layer, n, is strictly fixed, i.e., we assume that
both the � layer and the spacer are completely electroneutral.
So far as the DOS �Eq. �28�� is known, one can write the
value n as

n = N2�
i=1

4

���f� − �i
�f��h���f� − �i

�f��

= 2N2�
i=1

2

���a� − �i
�a��h���a� − �i

�a�� , �29�

where ��f� and ��a� are the Fermi-level positions for the FM
and for the AFM alignment of the moments, respectively.
The corresponding expressions for the excess free energy �F
are given by

�F�f� =
N2

2 �
i=1

4

����f��2 − ��i
�f��2�h���f� − �i

�f�� , �30�

and

FIG. 1. The variation of the subband-edge position Ei
�f��L� and

Ei
�a��L� as a function of the spacer thickness L at B=0.1. The energy

states E1
�f��L�, E2

�f��L�, and E1
�a��L� are depicted by solid bold and

dashed bold lines, respectively; the energy states E3
�f��L�, E4

�f��L�,
and E2

�a��L� are depicted by solid thin and dashed thin lines,
respectively.
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�F�a� = N2�
i=1

2

����a��2 − ��i
�a��2�h���a� − �i

�a�� . �31�

Excluding the values ��f� and ��a� from these expressions by
means of Eq. �29�, one can obtain the confinement-mediated
exchange integral

Ic = �F�f� − �F�a�, �32�

as a function of n. For example, if the value of n is such that
only the lowest subband 	1�k�� is partly filled, we obtain the
exchange integral

Ic = �F�f� =
n

2
� n

N2
+ 2�1

�f�� , �33�

which is certainly FM. If the value of n is such that the
two-dimensional subbands 	1,2

�f� and 	1
�a� can be partly filled,

and all the other subbands, 	3,4
�f� and 	2

�a�, are empty, we ob-
tain

Ic =
n

2
��1

�f� + �2
�f�� −

N2

4
��1

�f� − �2
�f��2 − n�1

�a�. �34�

The explicit expressions for the exchange integral Ic �Eq.
�32�� as a function of n and l could be written for arbitrary
occupation of the two-dimensional subbands, 	i

�f� and 	i
�a�,

with carriers. The analysis of these expressions shows that
the IEC not only varies in magnitude but also switches, with
varying n and l, between being FM and AFM. Figure 2
shows that the exchange interaction at short interlayer dis-
tance and small number of electrons within the � layer is
FM. On the other hand, with increasing either n or l �at given
B�, the exchange integral can change its sign up to two times.
In the region ��f ,a��0, our approach is not valid.

Second, let us analyze the opposite case when the Fermi
level, �, is strictly fixed due to its pinning by a quasiparticle
reservoir external to the � layers. For example, the pinning
could be caused by either the large DOS peak of other bulk
bands �which are not explicitly considered above� or by an
external electric field. In this case, we need to write the ex-
cess of thermodynamical potential: ��=�F−�n. The deter-
mination of the IEC integral is read as the difference

Ic = ���f� − ���a�, �35�

where specific expressions for �� are given by the following
formula for FM and AFM alignments of the moments
M��l�, respectively:

���f� = −
N2

2 �
i=1

4

��i
�f� − ��2, �36�

and

���a� = − N2�
i=1

2

��i
�a� − ��2. �37�

The states that lay below the Fermi level give rise to the
integrals �36� and �37�; in turn the position of the Fermi level
is assumed to be below the bottom of the conducting band,
��0.

The following situations can occur, depending on the
Fermi-level position: If � lies inside the band gap as deep as
�1

�f���, one has ��=0. If the lowest level is only filled,
�1

�a�����1
�f�, the state with parallel moments of adjacent �

layers is realized:

Ic = ���f� = − N2��1
�f� − ��2/2. �38�

However, when �1
�a���, the determination of the magnetic

configuration of the system becomes cumbersome and more
detailed study is necessary to clarify it. The analysis of Eq.
�35� shows that, for a given B, IEC mediated by the confine-
ment states changes its character from FM to AFM and vice
versa with increasing interlayer distance or with the Fermi
energy. The curves ��l� along which the exchange integral
vanishes, Ic�� , l�=0, are represented in the phase diagram of
Fig. 3.

An asymptotic behavior of the confinement-mediated IEC
magnitude at large value of the spacer thickness is given by
the expression: Ic

����l��exp�−2l /�����, where the character-
istic length

���� = �2maz�
U
 � 
JM
��−1 �39�

is the scale of the coupling decay in dimensional units, which
is the choice between plus or minus depends on the filling of
the two-dimensional subbands. The value ���� will be esti-
mated in the Appendix.

V. INTERBAND CONTRIBUTION INTO INTERLAYER
EXCHANGE COUPLING

The discussion on IEC in DMA should not be limited to
the role of the confinement-induced two-dimensional sub-
bands because other SC states exist, which can mediate an

FIG. 2. The phase diagram of DMA at fixed number of quasi-
particles in the � layers, n: FM and AFM regions are separated by
solid curves N�L� along which the exchange integral vanishes,
Ic�N ,L�=0; the Fermi level ��f ,a� enters the conduction band above
the dotted line N�f�=N���f�=0� and the dashed line N�a�=N���a�

=0�, respectively. The values of l and n are measured in the dimen-
sionless units, L=4lmaz
U
 and N=4n / �mN2az

2U2�, respectively; B
=0.1.
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effective exchange to no lesser extent. In order to allow for
these processes, we now take into account the quasiparticle
excitations between the bulk conduction bands and the va-
lence bands.

In principle, one could write a general expression for the
two-particle Green function, taking into account both intra-
band �n=n�� and interband �n�n�� scattering processes due
to the bilayer potential in the Hamiltonian �1�–�3� associated
with an appearance of deep states below the band edge.
Without losing the essential physical content, we restrict our-
selves to the second order in perturbation theory with respect
to the dimensionless parameters that characterize the inter-
band interaction: 
Un,n�g�l�
�1 and 
Jn,n�g�l�
�1, where n
�n� and g�l� is an exponentially decreasing function of the
interlayer distance �Eq. �13��. Within such an approach, one
may separate intraband processes from interband processes
and reduce the expression for the interband component of the
effective coupling between two FM � layers through an un-
doped SC spacer to a treatable form,

Ig�l� = �
n�n�

�
kz

�
kz�

�
k�

�
k��

exp�i�kz − kz��2l�

�� d	

2�i
�n,n�

2 �k� − k��,	�M2Gn
0�k,	�Gn�

0 �k�,	� ,

�40�

where

�n,n��k� − k��,	� = Jn,n��k� − k��� +
g0�	�
D�	�

�K�	�Jn,n��k� − k���

+ JUn,n��k� − k���� �41�

is the renormalized interband vertex.
The intraband exchange constant J, and the values of

K�	�, D�	�, and g0�	� have been determined above by Eqs.
�11�, �10�, and �12�. The indices n and n� refer to conduction

and valence bands, respectively. According to Eq. �41�,
which holds provided that the interband matrix elements are

comparably small, 
Ũn,n�
� 
U
 and 
J̃n,n�� 
J
, and the intra-
band interaction does not split any state from the valence
band, the bare interband vertex function undergoes a renor-
malization, Jn,n�→�n,n��	�, due to the electron confinement
at the metallic layers. The vertex function �n,n��	� depends
on the frequency 	 and has singularities determined by Eq.
�14�. Notice that the �n,n� does not vanish even if the bare
interband exchange is absent, Jn,n�=0, but Un,n��0.

Properly speaking, the interband IEC is determined by
the poles of the electron and hole Green’s functions in the
integral �40�. It is clear that, at least at 2l�a, quasimo-
menta close to the extremal points of the band spectrum give
the main contribution to the integral in Eq. �40�. There-
fore, in order to estimate its behavior, we can use, for a
vertex function slowly varying with k and k�, the approxi-

mate expression �n,n��k� −k�� ,	���n,n��k� −k�� ,	=Eg
n,n��

��n,n��k�−k��,Kn,n��
, where Eg

n,n� is the energy distance be-

tween the nth conduction-band minimum and the n�th
valence-band maximum, which are separated by the wave
vector Kn,n� belonging to the first Brillouin zone, and Kn,n��

is the projection of vector Kn,n� onto the �x ,y� plane. In such
a case, the exchange integral can be expressed as

Ig�l� = �
n,n�

�
kz

�
kz�

�
k�

�n,n�
2 M2 exp�i�kz − kz��2l�

�nk − �n�k�
, �42�

where we assume that the conduction band �n� is almost
empty and the valence band �n�� is almost full.

Below, we analyze the structure of the IEC integral Ig�l�
�Eq. �42�� for systems with various type of electron spectrum
of the SC spacer, taking into account the effects of crystal
symmetry. General expressions of the indirect exchange in-
tegral, Ig�l�, for band energy spectra of some SC �GaAs, Si,
and Ge� will be obtained, and then, in the Appendix, the
corresponding parameters of the IEC will be estimated.

A. III–V compounds electron spectrum

In view of applications to III–V zinc blend compounds, a
SC with a direct gap between the valence and the conduction
bands at the � point of the Brillouin zone should be dis-
cussed. Of course, direct interband single-particle excitations
at this point provide the dominant contribution to the mag-
netic coupling across the intrinsic spacer in the
�III-V�-�-doped transition-metal systems. At zero tempera-
ture, Eq. �42� describes the corresponding contribution to
IEC, Ig= Ig

�0�. Assuming that the energy gap of the SC is small
in comparison with the bandwidths, Wv�Wc�Eg, one can
use the effective-mass description by expanding the corre-
sponding energies around the � point at k=0,

�n�k� = − Eg −
�k��2

2mv
, �43�

and

FIG. 3. The phase diagram of DMA at fixed Fermi level: the FM
and AFM regions are separated by solid curves ��L� along which
exchange integral vanishes, Ic�� ,L�=0; the coupling is absent
above the dashed line E1

�f�. The values of l and � are measured in
the dimensionless units, L=4lmaz
U
 and �=2
�
 / �maz

2U2�, respec-
tively; B=0.1.
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�nk =
k2

2mc
�0� , �44�

where Eg=Eg
�0� is the direct-gap energy, and mv and mc

�0� are
the effective masses of light holes and electrons, respec-
tively. Inserting the expressions �43� and �44� into Eq. �42�, it
is not difficult to estimate the IEC dependence on the spacer
thickness under the condition l�a,

Ig
�0��l� = −

2���0��2M2a4�0

�4�l�3/2
exp�− 2l/�0�


�0

, �45�

where

�0 = �2�mc
�0� + mv�Eg

�0��−1/2,

�0 =
�mvmc

�0��3/2

�mv + mc
�0��2 , �46�

��0� is the vertex �Eq. �41�� evaluated at the wave vector
k� −k��=0 and at the frequency 	=Eg

�0�.

B. Silicon electron spectrum

In the case of the transition-metal �-doped group-IV SC
host, the situation appears to be more complex. The silicon
spectrum has the valence-band maximum at the point � and
six equivalent minima of the conduction band, located near
the points X of the first Brillouin zone of the diamond recip-
rocal lattice. The maximum of the valence band and minima
of the conduction band are separated in the reciprocal space
by wave vectors forming the irreducible star �K�X� with
components: K�1= �

2a �1�� ,0 ,0�, K�2= �
2a �0,1�� ,0�, and

K�3= �
2a �0,0 ,1���, where ��1 and a is the intermono-

layer distance in the silicon crystal lattice.26

As noted above, we are considering the case of an un-
doped SC in which the Fermi level � is fixed inside the
indirect energy gap and Eq. �42� describes the contribution of
the interband carrier excitations to IEC. We look for the
poles closest to the real axis since they correspond to the
longest-range magnetic coupling. It is obvious that such a
singularity in the integral �42� arises from the indirect band
gap having the smallest energy difference 
�nk−�n�k�
=Eg at
k=Kn,n�=Kn=K�X and k�=0. In the effective-mass ap-
proach, the conduction-band spectrum is written in the form

�nk =
�kl − Kn�2

2ml
+

kt
2

2mt
, �47�

and one can use Eq. �43� to describe the valence band, where
now Eg=Eg

��X� is the energy distance between the
conduction-band minimum at the X point and the valence-
band �Eq. �43�� maximum at the � point.

Here, it is implied that the index n runs through �1, �2,
and �3, assigning six conduction valleys; the single valence
band has the index n�, which may be omitted, and mv is
effective mass of light holes. The dependence �Eq. �47�� has
been expressed along the main axes; ml is longitudinal elec-
tron mass and mt is transverse one. After the transformations
kz�−kz=q−Knz and 
mc /mvkz�+
mv /mc�kz−Knz�=K, where

mc=mt for n= �1 and �2, and mc=ml for n= �3, one can
rewrite the exchange integral �42� in the form

Ig
��X��l� = − �

n
	 d2k�

�2��2

dq

2�

dK

2�

�
����X��2M2a4


mc

mv
+ 
mv

mc

exp�i2ql�exp�− i2Knzl�
K2+q2

2�mv+mc�
+ ��k��

, �48�

where

��k�� = Eg +
k�

2

2
� 1

mv
+

1

mc
� ,

Kn= �Kn� ,Knz�, kz is the projection of the vector k along the
z axis, k� is the projection of the vector k on the interface
�x ,y� plane, ���X� is the vertex �Eq. �41�� evaluated at the
wave vector k� −k��=Kn��0, and at the frequency 	=Eg

��X�.
We skip the long calculation of the integral �48�, which has
already been carried out in Refs. 27 and 28, and give the
final result. The asymptotical behavior of Ig

��X��l�, under con-
dition l�a, may be evaluated as

Ig
��X��l� = −

2����X��2M2a4

�4�l�3/2 �2�1
exp�− 2l/�1�


�1

+ �2
exp�− 2l/�2�


�2

cos��l

a
�cos���l

a
�� , �49�

where

�1 = �2�mt + mv�Eg
��X��−1/2, �50�

and

�2 = �2�ml + mv�Eg
��X��−1/2,

�1 =
�mvmt�3/2

�mv + mt�2 ,

�2 =
�mvml�3/2

�mv + ml�2 . �51�

This expression gives the energy of the effective exchange
coupling due to electron transitions with a momentum trans-
fer Kn. One sees that there exist two contributions coming
from electron valleys of the SC band structure with different
orientations with respect to the z direction. The FM biasing
component, associated with the first term within the square
brackets of Eq. �49�, decreases exponentially with increasing
spacer thickness on a length scale �1 �Eq. �50��. The other
component drops on a length scale �2 �Eq. �51�� and simul-
taneously oscillates from FM to AFM with two incommen-
surate periods as the spacer thickness 2l increases. The
lengths ds=4a and dl=4a /� are short-wave and long-wave
periods, respectively.

Generally speaking, apart from the processes considered
above with finite quasimomentum transfer, electron transi-
tions without quasimomentum transfer at the point k=0
could give an important contribution to IEC despite the fact
that their excitation energy Eg

�0� exceeds the minimal band
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gap Eg
��X� for the silicon band structure. This is due to the

difference between the effective electron mass at the point �
and mc

�0�, and at the point X and ml,t.
Combining the expressions �49� and �45�, one obtains the

full energy of IEC across the intrinsic silicon-type SC spacer
at zero temperature, Ig= Ig

�0�+ Ig
��X�.

C. Germanium electron spectrum

In the conduction band of germanium, there exist eight
equivalent energy minima, lying at a boundary of the Bril-
louin zone, at the points L. The maximum of valence band
and minima of conduction band are separated by the wave
vectors forming the irreducible star �K�L� with components:
Kn= �

4a ��1, �1, �1�, where 1�n�8 and a is the inter-
monolayer distance.26 The expression for the spectrum can
still be described by Eqs. �43� and �47�, where now Eg

=Eg
��L� is the energy distance between the conduction-band

minimum at the L point and the valence-band maximum at
the � point. The index n assigns eight conduction valleys; the
single valence band has the index n�=0. The calculation of
the exchange integral �42� for the Ge spacer is carried out as
in the case of the Si spacer. The coupling energy due to
indirect electron transitions can be cast in the

Ig
��L��l� = −

2����L��2M2a4�3

�4�l�3/2
exp�− 2l/�3�


�3

� cos� 3�mt + mv�
mt + 2ml + 3mv

�l

2a
� , �52�

where

�3 = �2�mm + mv�Eg
��L��−1/2,

1

mm
=

1

3
� 1

ml
+

2

mt
� ,

�3 =
�mvmm�1/2

mv + mm
� 1

mv
+

1

mt
�−1/2� 1

mv
+

3

mt + 2ml
�−1/2

,

�53�

���L� is the vertex �Eq. �41�� evaluated at the vector K�L, and
at the frequency 	=Eg

��L�.
The dependence Ig

��L��l� on the spacer thickness consists
of a factor that falls exponentially on a length scale �3 �Eq.
�53��, modulated by an oscillatory part that changes sign
from FM to AFM with a period d3= �8 /3�a�mt+2ml
+3mv� / �mt+mv�. Since each electron valley located at the
point L of the Brillouin zone has the same projection along
the z axis, the exchange integral Ig

��L��l� �Eq. �52�� is not
divided into different components unlike the of the silicon
spacer discussed above.

The full energy of IEC across the undoped germanium-
type SC spacer at zero temperature is again the sum of pro-
cesses with and without quasimomentum transfer, Ig= Ig

�0�

+ Ig
��L�.

VI. CONCLUSIONS

In this work, we have discussed possible mechanisms of
indirect exchange between FM � layers in DMA, taking into
account the role of carrier confinement at these layers. We
have shown that an efficient IEC can even be mediated by
the undoped SC spacer due to virtual excitations across the
energy threshold. We established the important role of quasi-
two-dimensional spin-polarized states inside the bulk energy
gap, which are caused by confinement. Quasiparticle excita-
tions from these states to the band edge significantly contrib-
ute to the interlayer coupling; the magnitude and character of
which strongly depend on the parameters of the DMA. Vary-
ing the filling of the confinement states or the spacer thick-
ness, one could switch the exchange coupling between FM
and AFM. Taking into account effects of crystal symmetry,
we have also obtained the expression for the interband cou-
pling energy in the case of both direct and indirect-gap spac-
ers. The interband coupling decays exponentially with the
distance between the � layers and is strongly dependent on
the electron structure of the host. The combination of the two
mechanisms—confinement-mediated exchange and inter-
band exchange—mainly determines the behavior of IEC in
DMA with undoped spacer.

Main assumptions of our model and the results obtained
are backed by more rigorous ab initio calculations. In par-
ticular, a two-dimensional ferromagnetic half-metallic char-
acter of DMA was found by calculations in GaAs delta-
doped with Mn.15 It was shown that the in-plane conductivity
is metallic �only for spin-up� due to hole carriers confined at
and close to the Mn layers while the conductivity perpen-
dicular to the plane is extremely low, reflecting the tunneling
between the Mn layers. Calculations on a delta-doped layer
of Mn in Si �Refs. 21 and 22� and Ge �Refs. 19 and 20� also
demonstrated two-dimensional half-metallic ferromagnetism.
Furthermore, the magnetic coupling between two Mn-doped
layers as a function of number of Ge spacing layers for dif-
ferent concentrations of manganese was studied within
density-functional theory.19 All these systems showed FM as
the most stable magnetic alignment except for the structure
that consists of the three Ge spacer atomic layers and full Mn
monolayer: the latter exhibits the AFM state. As the number
of Ge atomic layers increases, the value of IEC decreases,
becoming less than 0.01 eV �close to the limit of numerical
accuracy19� at five Ge spacer atomic layers. In ab initio
study29 of the carrier-induced magnetization reversal in digi-
tal �Ga,Mn�As heterostructures with varying distance be-
tween two Mn monolayers along with the distribution and
concentration of external carriers, it was found that the pres-
ence of external holes switches the AFM state to FM one
when the interlayer Mn-Mn distance is of 16.96 Å, whereas
the addition of electrons produced no significant impact. This
effect was referred to the spin polarization of the SC spacer
states and half-metallic feature of the system.

The discussed findings of first-principles simulations19,29

qualitatively match our results: magnetic interlayer interac-
tion in DMA with undoped spacer is strictly coupled with the
confined �localized� spin-polarized carriers and seems to
have the same spatial extension. A sign change in IEC can
take place as the spacer thickness or the filling of the con-
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finement states vary. It is believed that the common pecu-
liarities of the magnetic phase diagram of DMA �Figs. 2 and
3�, i.e., the switching between FM and AFM phases, could be
reproduced within computational approaches. And what is
more, under a high numerical accuracy condition, the IEC
dependence on the DMA period can be described, taking into
account a self-consistent redistribution of both charge and
spin densities.

Let us finally discuss some unsolved theoretical problems
of DMA. In our opinion, the most important task is to de-
velop the spin-fluctuation theory of itinerant magnetism for a
transition-metal � layer inserted into a SC host. On the other
hand, in the attempt to apply our model to real situation in
DMA, we are faced with the following difficult questions.
What kind of magnetic order can occur in a strongly inho-
mogeneous quasi-two-dimensional layer? How can one de-
scribe IEC in DMA with a dirty spacer of nondegenerate SC
containing impurities and clusters? In order to answer these
questions, it is necessary to include in the model the impurity
scattering effects.

It is also desirable to extend our treatment to other DMA,
which are different from those usually studied, i.e.,
GaAs/Mn and Ge/Mn, both with respect to the SC host �for
instance, GaSb, GaN, �Ga,Al�As, and binary alloys of type
SixGe1−x� and with respect to the metal insertion �for in-
stance, Fe, Co, Cr, and their alloys�. Moreover, it would be
crucial to carry out a comparative analysis of the magnetic
properties of DMA with various morphologies and orienta-
tions of the � layers when transition-metal ions could occupy
substitutional or interstitial positions in planes with crystal-
line indices such as �001�, �011�, and �111�.

As a concluding remark, we point out another result that
can be proved without going far beyond the scope of our
scheme to treat the confinement-mediated exchange. It could
be shown that any noncollinear state for the system under
consideration, n+ ·n−� �1, is always energetically unfavor-
able with respect to the two collinear states, either the FM,
n+ ·n−=1, or the AFM, n+ ·n−=−1. It is necessary to point
that if one takes into account the imperfection of the � layer
associated to its roughness, the noncollinear alignment of the
moments could become favorable at some nominal spacer
thicknesses near a critical value L��B�. In this case, the mag-
netic phase diagram of DMA could acquire the regions of
noncollinear states along FM-AFM boundaries in Figs. 2 and
3. The roughness effect can be treated, for instance, in the
framework of the model of Ref. 30.

ACKNOWLEDGMENTS

The work was partially supported by the University of the
Basque Country �Grant No. 9/UPV 00206.215-13639/2001�,
by Spanish Ministerio de Ciencia y Tecnología �Grant No.
FIS 2004-06490-C03-01�, and by RFBR �Grant No. 07-02-
00114-a�.

APPENDIX

Our simplified model describes the states induced by the
FM � layer with energies lying either below the bottom of

the conduction band or above the top of the valence band. It
should be emphasized that, in real DMA with complex band
structure, these states are not constrained to reside in the
band gap and could be deep enough to enter into the band
continuum region. Although the states induced by the FM �
layer possess a clear two-dimensional character and have
their wave functions confined to one or two SC monolayers
adjacent to the transition-metal monolayer or submonolayer,
they play an important role in the IEC due to the strong
potential and exchange scattering of quasiparticles of the SC
spacer on the plane of FM defects. Unfortunately, at the
present, the lack of throughout experimental data does not
allow us to correctly obtain the above mentioned scattering
parameters. We can only give rough estimates of the charac-
teristic lengths ���� based on the electron structure
calculations.15–22 Extracting the local DOS shifts for the
spin-up and spin-down two-dimensional bands relative to the
bulk SC band, one can derive: 
U
�2–3 eV and 
JM

�1–2 eV. If one takes m=0.1m0 �m0 is the free-electron
mass� and a�5 Å, the decaying scales of the confinement-
mediated IEC are ��+��2–3 Å and ��−��3–5 Å. In turn,
under the same assumptions, as it can be seen from Figs. 2
and 3, the critical spacer thickness corresponding to the
switching between the parallel and antiparallel configura-
tions of adjacent FM � layers would be of the same order as
�or larger than� ����.

Sufficiently reliable estimates can be obtained for the in-
terband component of IEC. For pure crystalline GaAs, the
main contribution to IEC is due to direct electron excitations
through the optical gap Eg

�0� at the point �. Using well-known
data: mc

�0�=0.065m0, mv=0.15m0, a=1.41 Å, and Eg
0

=1.5 eV,31 one may derive from Eq. �46� the parameters of
the exchange integral �45�, �0=3.44 Å and �0=0.021m0.

For diamondlike SC, there are two main contributions.
One originates from direct electron excitations through the
optical gap Eg

�0� at the point �. The other is determined by
indirect electron excitations through the thermal gap Eg

��X�

for Si or Eg
��L� for Ge. However, as a rule, the electron effec-

tive mass at the point k=0 is smaller than the mass at the
point k=Kn. Eventually, in the real case, the direct band
excitations give rise to a longer-scale coupling in comparison
with the indirect band excitations, �0��1,2 for Si spacer and
�0��4 for Ge spacer, although Eg

0�Eg
��X� ,Eg

��L�.
The band parameters of pure crystalline silicon can be

taken from the textbook:31 Eg
��X�=1.17 eV, Eg

�0�=3.4 eV,
ml=0.92m0, mt=0.19m0, mc

�0�=0.156m0, mv=0.16m0, a
=1.35 Å, and �=0.18. Therefore the following estimates
hold: �0=1.89 Å, �1=3.06 Å, �2=1.74 Å, �0=0.039m0,
�1=0.043m0, �2=0.048m0, ds�5.4 Å, and dl�27 Å.

For pure crystalline germanium, it is well known that ml
=1.59m0, mt=0.082m0, mc

�0�=0.041m0, mv=0.04m0, a
=1.41 Å, and the minimal indirect band gap is Eg=Eg

�L

=0.744 eV, close to the value of the direct band gap, Eg
0

=0.898 eV at the point � �k=0�,31 so that the following
estimates hold: �0=7.25 Å, �4=5.67 Å, �0=0.010m0, mm
=0.12m0, �4=0.0140m0, and d4=103.8 Å.

We note that the two mechanisms of IEC in DMA consid-
ered above �the confinement-mediated and interband� decay
over comparable length scales.
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